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Abstract The accuracy of performance-prediction models
is crucial for widespread adoption of performance prediction
in industry. One of the essential accuracy-influencing aspects
of software systems is the dependence of system behaviour on
a configuration, context or history related state of the system,
typically reflected with a (persistent) system attribute. Even
in the domain of component-based software engineering, the
presence of state-reflecting attributes (the so-called inter-
nal states) is a natural ingredient of the systems, implying
the existence of stateful services, stateful components and
stateful systems as such. Currently, there is no consensus on
the definition or method to include state-related information
in component-based prediction models. Besides the task to
identify and localise different types of stateful information
across component-based software architecture, the issue is
to balance the expressiveness and complexity of prediction
models via an effective abstraction of state modelling. In
this paper, we identify and classify stateful information in
component-based software systems, study the performance
impact of the individual state categories, and discuss the costs
of their modelling in terms of the increased model size. The
observations are formulated into a set of heuristics-guiding
software engineers in state modelling. Finally, practical effect
of state modelling on software performance is evaluated on a
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real-world case study, the SPECjms2007 Benchmark. The
observed deviation of measurements and predictions was
significantly decreased by more precise models of stateful
dependencies.
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1 Introduction

During the last few years, many approaches dealing with
performance prediction have been introduced [2]. In the area
of Component-Based Software Engineering (CBSE), spe-
cialised prediction approaches aim to understand the perfor-
mance (i.e. response time, throughput, resource utilisation)
of the component-based architecture based on performance
properties of individual components [3,19]. The performance
properties of a component-based system are influenced by a
number of factors, including components implementation,
deployment, environmental context and system usage. The
difficulty of understanding component-based system perfor-
mance is further strengthened by the influence of the internal
state of the system or its components [19]. Such a state can be
for instance determined by an internal component attribute
indicating if the component should at the moment prioritise
reliability (apply a more reliable but slower algorithm) or
performance (apply less reliable but faster algorithm).

1.1 Challenges of stateful analysis

In the context of component-based performance models, the
primary challenge of stateful analysis is the state identi-
fication across the component-based architecture and the

123



www.manaraa.com

1320 L. Happe et al.

decision on an effective state abstraction in the models. In
this respect, the following three issues can be identified.

State definition: The property of statefulness can be identified
in various artefacts along the component-based system life
cycle and in various elements of a component-based architec-
ture. Existing literature lacks the localisation of state-holding
information in component-based systems [4,19,36], and its
classification into a set of categories.

Performance impact: The benefits of state modelling include
increased expressive power of the models and higher accu-
racy of predictions. The increase of prediction accuracy
achieved by state modelling, especially in comparison to the
increased effort of modelling and analysis, is however not
well studied, as observed by a number of authors [5,19,36].
A discussion on how the existing performance-driven models
deal with the interpretation and analysis of stateful-prediction
models is elaborated in Sect. 3.1.

Prediction difficulty: The balance between expressiveness
(state modelling) and complexity (model-size increase) is
a challenging research question. Only when it is understood
what costs need to be paid for the increase in prediction accu-
racy, we can competently decide on the suitable abstraction
of state modelling (to what extent the state-related informa-
tion present in the analysed system shall be included in the
model).

The lack of work addressing the discussed issues can be
explained by insufficient support of state-related informa-
tion in existing performance-prediction models. Industrial
models (like EJB [33], COM [25] or Corba [27]) have been
designed to support internal state of components, since it is
one of the crucial implementation details, but lack the support
of broad analysis capabilities with respect to system perfor-
mance. The performance-driven research-oriented compo-
nent models (see detailed survey in Sect. 3.1) either lack
support of state modelling or model state-related attributes
only partially (see Table 2).

1.2 The contribution of the paper

Besides the identification of state-related information in
component-based systems and its classification into a set
of categories, the main contribution of this paper is a novel
state-effect analysis evaluating the performance impact of
the identified state classes together with the discussion of
the increase in the prediction difficulty introduced by state
modelling. As a proof of the concept, we extended an existing
performance prediction framework and employed it in a real-
world case study, demonstrating the effect of state modelling
on software performance. The paper is an extension of our
previous work [16] with an expanded state-effect analysis, an

extensive experimental evaluation of newly derived heuris-
tics, and an additional case study.

The paper is organised as follows. Section 2 localises state-
related information in component-based systems and classi-
fies it along two dimensions into a set of categories. Section 3
surveys existing performance-driven component models with
respect to state support, and extends the selected Palladio
Component Model (PCM) [5] to support the identified state
categories. Sections 4 and 5 elaborate the main contribution
of the paper by introducing an approach supporting software
engineers with the information about performance impact
and model-size costs of the individual state categories. Sec-
tion 6 presents a validation of our approach on a realistic
case study and Sect. 7 summarises our practical experience
and observations from the conducted experiments. Finally,
Sect. 8 concludes the paper.

2 State categories in component-based systems

In this paper, we use the term state to refer to a configu-
ration, context or history related information remembered
inside the system (typically as a value of a component/system
attribute) and used to navigate system behaviour. There-
fore, a state influences system control flow, which propagates
into resource-demand sequences, and finally to performance
properties (such as response time, throughput, resource util-
isation). A typical example of a state is the value of an
attribute stored inside an object in object-oriented program-
ming, which is accessed by object’s methods and used to
customise the object’s response to incoming calls.

The state as understood in this paper should not be
confused with an implicit state of system execution, i.e.
the current position in system execution, as used by many
approaches employing state-based models (such as Markov-
ian models [10] or finite automata [9]). In our approach, the
state is a value of an explicit attribute attached to the behav-
ioural model of system element [11,15,19]. The state can be
set and read explicitly, and used in behavioural decisions.

To identify the relevant state-related information across
the component-based system architecture, we surveyed exist-
ing component-based systems and component models (see
Sect. 3.1) and observed that the notion of component-based
system state is dependent on various architectural elements
and execution processes in the system. In particular, we iden-
tify two dimensions, along which we categorise the observed
state types.

(i) Scope dimension answers the question: Is the state pro-
prietary to a component/system/user?

(ii) Time dimension answers the question: Is the state
initialised or changed at run/deployment/instantiation
time?
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Table 1 Identified state
categories Runtime Deployment time Instantiation time

Component (a) Protocol state (c) Allocation state (d) Configuration state

(b) Internal state

System (e) Global state (f) Allocation state (g) Configuration state

User (h) Session state

(i) Persistent state

Table 1 outlines the identified state categories. Along the
scope dimension, it distinguishes component-, system- and
user-specific states, all defined below. With respect to the
time dimension, we examined all the stages of component-
based system life cycle [16], and observed that a state is
by nature a dynamic information that evolves independently
for individual elements in the system. If it is fixed along life
cycle, it is not set before the element gains its identity (instan-
tiation stage in case of a component, assembly stage in case
of a system). We refer to this moment as instantiation time.
The following moments are the deployment time and run-
time, which correspond to the deployment stage and runtime
stage of the life cycle.

The rest of this section presents the identified state cate-
gories, structured into three sections along the scope dimen-
sion, and for each category, it outlines a demonstration
example.

2.1 Component-specific state

Component-specific state is an information remembered for
each component and used inside the component to adjust the
component’s response to incoming requests. The component
state can be modified only by the services of the component,
not by other components.

(a) Protocol state: This state holds the information about
currently acceptable service calls of a component. It is typ-
ically part of an interface contract between service provider
and its client [34].
Example Consider a software component managing a file,
which can be opened, modified and closed. The component
is initially in the state when it accepts only the request for
opening the file. After that, it moves to the state, where the file
can be either modified or closed. Closing takes the compo-
nent again to the initial state. An indication for the protocol-
state performance impact in this example is, for example, the
rate of rejected requests (occupying the communication link).
Moreover, the protocol state is often used to reflect compo-
nent life-cycle stages, such as inactive, initialised, replicated,
or migrated.

(b) Internal state: This state holds an internal information
set by the services of the component (at runtime) and used
to coordinate the behaviour of the component with respect

to the current value of the state. Internal state is externally
invisible and externally unchangeable.
Example Consider a software component that can be in either
full or compressed mode, based on the remaining capacity of
its database. If it is in the compressed mode, all insert queries
on the database are additionally compressed.

(c) Allocation state: This state holds component proper-
ties specified at deployment time, based on the allocation
environment of the component.
Example An example of a performance-relevant deployment
property is the maximal length of a queue used by the compo-
nent. Such a property is set at deployment time and remains
fixed along the execution of a component.

(d) Configuration state: This state holds instance-specific
component properties, fixed during instantiation of the com-
ponent.
Example The configuration state may specify a selected
parallel-usage strategy (like rendezvous or barrier synchro-
nisation), which may differ for each component instance.

2.2 System-specific state

System-specific state is a shared information available to
the whole system and used to customise or coordinate joint
behaviour of individual components.

(e) Global state: This (runtime) state holds a global infor-
mation shared and accessed by all components of the system.
Example A typical example is a global counter, remembering
the number of service calls executed in the system since the
last back-up of the system and triggering the back-up process
after a certain number is reached.

(f) Allocation state: This state holds a deployment-specific
information shared by all components in the system.
Example The examples include the availability of supportive
services of the underlying infrastructure (e.g. middleware),
parameters of employed thread pool, or selected communi-
cation or replication strategies.

(g) Configuration state: This state defines a system con-
figuration property specified before launching the system.
Example An upper bound on the number of component
instances that may exist in the system at the same time. Such
a pre-configured information may be utilised by all compo-
nents whenever a new component instance is to be created.
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2.3 User-specific state

User-specific state is an information remembered for each
user and used to customise system behaviour for the user.

(h) Session state: This state holds a user-specific informa-
tion for a single session. The information defining the state
is forgotten when the session terminates.
Example A session can represent one sale performed in a
supermarket system. Each sale may start with scanning a
customer card, which then customises system processing of
the sale. The system may dynamically recompute during the
shopping process, the prices of some products or their com-
bination, which may be time consuming and can influence
the system response time for a user.

(i) Persistent state: This state holds a user-specific infor-
mation throughout the whole existence of user in the system,
independently on an existence of a session belonging to the
user.
Example Each user of an online media store may have a
different limit on data for download under full downloading
speed. The system needs to remember this information to
control the attempts of users to download data over the limit
and regulate downloading speed accordingly.

3 Performance model for SCBSs

This section surveys and compares existing component-
based models for performance prediction with respect to their
capabilities related to state and summarises their coverage of
identified state categories in Table 2. Additionally, we sum-
marise the means the models provide to express the state-
related information.

3.1 State of the art evaluation

As summarised in Table 2, existing performance-driven com-
ponent models can be (based on their analytical methods)
classified into four main streams: design time, formal speci-
fication, measurement, and simulation models. Each of these
approaches utilises different model elements to express state-
related information.

Among design time performance prediction methods, the
following methods partially support state modelling. First,
the CB-SPE approach by Bertolino and Mirandola [7] uses
UML extended with SPT annotations profile to model a com-
ponent state or configuration in a static way. The component
model, based on a proprietary metamodel PCM (PCM) [5],
builds on static abstraction of state modelling, too. Addition-
ally, this model allows modelling a session state through addi-
tional input data in a usage profile of a system. Despite these
abstractions, a need of further extensions for state modelling
was identified in PCM [20].

The PECT model [15] deals with state modelling in more
detail and addresses the performance predictability proper-
ties of components with runtime system assembly variabil-
ity. Even though the notion of a state is partially included
(see Table 2), there is no full support for simulation of this
state-based variability to provide more realistic performance
predictions. The model builds on a Component Composi-
tion Language (CCL), which allows modelling component
behaviour based on statecharts. The performance impact of a
state is not further investigated, the focus of state modelling
is directed on model checking of functional properties. Addi-
tionally, based on statecharts and certain behaviour claims,
reliability of the system can be verified. Similarly, a state
is modelled in the Component-Based Modelling Language
(CBML) with the possibility to statically configure compo-
nent parameters.

In the ProCom component model [29], designed for
embedded systems, the state is modelled only statically with a
set of component parameters. Further, the COMQUAD com-
ponent model [24] is using Petri nets as a system behaviour
model, the dependence of a service call on input data is how-
ever omitted. A number of other prediction models claim an
ability to express state changes, but in many cases, they refer
to behaviour protocol checking [15], state changes monitor-
ing [26] or performance annotations based on measurements
[6].

The formal specification model for testing of performance
and reliability introduced by Hamlet et al. (i.e. HAMLET)
[11] suggests to model a state as an additional input (addi-
tional floating point external variables loaded at the time
of component execution) and provide tests showing func-
tional aspects of a state. The measurement approach called
AQUA [8] inherently monitors state impact (component
description is given by the specification of Enterprise Java
Beans, EJBs [33]) and showed how important it is to under-
stand how a system state is interpreted. Another approach to
measure EJB applications, developed by Gorton et al. (i.e.
NICTA) [23] uses benchmarking methods to get platform-
independent information, such as thread pool size, etc. The
simulation-based approach MIDAS [1] determines perfor-
mance characteristics of the system through state estimation
or computation during simulation, for example, queueing
characteristics.

3.2 Palladio component model (PCM)

Based on the evaluation in Sect. 3.1, we decided to extend the
Palladio Component Model (PCM) [5] with further capabili-
ties to model state-related information. The advantage of this
model over the others is its clear component-based nature,
already partial support for state modelling and the possibility
to model usage profile in detail.
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Component 1 Component 2

CPU HDCPU

Resource Container 1 Resource Container 2

Parameter:
TP.Size, 
Asynch.Proactor

Configuration:
SchedulingPolicy

Configuration:
Protocol

5 calls to Service 1
P(X=1) = 1.0
P(Y=0) = 0.1
P(Y=3)= 0.7
P(Y=5) = 0.2

Call
Service 2

Call
Service 3

Y > 3Y <= 3 

CPU HD

Input:
Z = X + 5

Input data:
X, Y

Input:
Z = 27*X+3

Count =
Z + 2

Input data:
Z

Behaviour
Service 2

Behaviour
Service 3

<<allocated>> <<allocated>>

CPU

Behaviour
Service 1

Component Developer 1 Component Developer 2

System Deployer

Software Architect

Domain Expert

<<uses>>

Service 1

Service 2

Service 3

Service 2

Service 3

<<allocated>>

<<implements>>
<<implements>>

Component Parameter:
A, B

Input data:
S.session

Fig. 1 PCM example

The PCM is a modelling language specifically designed
for performance prediction of component-based systems,
with an automatic transformation into a discrete-event sim-
ulation of generalised queuing networks. Its available tool
support (PCM Bench) allows performance engineers to pre-
dict various performance metrics, including the discussed
response time, throughput and resource utilisation. All three
properties are reported as random variables with probabil-
ity distribution over possible values. The response time is
expressed in given time units (e.g. seconds), throughput in
number of service calls or data amount per time unit (e.g.
kilobytes per second), and resource utilisation in the number
of jobs currently occupying the resource.

First, the related foundations are introduced. Figure 1
shows a condensed example of a PCM instance. It consists of
four models created by four developer roles in a parametric
way, which allows the models to be updated independently
of each other. In this section, we informally describe the fea-
tures of the PCM meta-model and focus on its capabilities
for state modelling. The division of work targeted by CBSE
is enforced by the PCM, which structures the modelling task
to four independent languages reflecting the responsibilities
of the four different developer roles.

Component developers are responsible for the specifica-
tion of components, interfaces, and data types. Software com-
ponents are the core entities of the PCM. Basic components

contain an abstract behavioural specification called Ser-
vice Effect Specification (SEFF) for each provided service.
SEFFs describe how component services use resources dur-
ing component-internal processing (via internal actions) and
call required services (via external call actions) using an
annotated control flow graph similar to UML Activity Dia-
grams. For performance prediction, component developers
need to specify the demands of internal actions to resources,
like CPUs or hard discs (see Fig. 1, action with resource
demand on a CPU or a hard disc are called “CPU” or
“HD”). Component developers can annotate external calls
as well as control flow constructs with parameter depen-
dencies. This allows the model to be adjusted to different
system-level usage profiles. Parameter values can be of dif-
ferent types (e.g. String, Integer, Real, Composite) and can
be characterised with random values to express the uncer-
tainty while modelling large user groups. Furthermore, each
component (or composed component) can define static com-
ponent parameters. In the PCM, parameter characterisations
[21,22] abstractly specify input and output parameters of
component services with a focus on performance-relevant
aspects. For example, the PCM allows defining the VALUE,
BYTESIZE, NUMBER_OF_ELEMENTS, or TYPE of a para-
meter. The characterisations can be stochastic, e.g. the byte
size of a data container can be specified by a probability mass
function:

data.BYTESIZE = IntPMF[(1,000;0.8)(2,000;0.2)]
where IntPMF is a probability mass function over the
domain of integers. The example specifies that data have a
size of 1,000 bytes with probability 0.8 and a size of 2,000
with probability 0.2. Software architects compose the compo-
nent specifications into an architectural model. They create
assembly connectors, which connect required interfaces of
components to compatible provided interfaces of other com-
ponents. They usually do not deal with component internals,
but instead fully rely on the SEFFs supplied by the compo-
nent developers. Furthermore, software architects define the
system boundaries and expose some of the provided inter-
faces to be accessible by users. System deployers model the
resource environment (e.g. CPUs, network links) and allocate
the components in the architectural model to the resources.
Resources have different attributes, such as processing rates
or scheduling policies. Finally, domain experts specify the
system-level usage model in terms of stochastic call fre-
quencies and input parameter values for each called ser-
vice, which then can be automatically propagated through
the whole model and define non-persistent user session
parameters.

The PCM already provides certain abstractions or approx-
imations to model a state: (i) static component parameters
(or properties) characterise the state of a component in an
abstract and static way and hence offer a more flexible
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parametrisation of the model. These parameters are prop-
agated through development process differently, they are
defined and initialised by a component developer and cannot
be changed at runtime. (ii) Limited passive resources, such as
semaphores, threads from a pool, or memory buffers result in
waiting delays and contentions due to concurrently executed
services. (iii) Input data from usage profile allow expressing
a session state. Table 2 illustrates the capabilities of PCM to
model the identified state categories.

3.2.1 PCM stateful extension

We extended the component behaviour model of the PCM
(the SEFF) to allow the modelling of a component inter-
nal state as described in Sect. 2.1(b). The PCM with this
stateful extension is the first approach that supports the
modelling of the internal state explicitly. With this exten-
sion, also a system-specific global state [Sect. 2.2(e)] can
be modelled by adding a blackboard component that makes
its internal state available to other components in the sys-
tem, and the protocol state [Sect. 2.1(a)] modelled with a
protocol-state holder stored within an internal-state parame-
ter. Furthermore, component- and system-specific allocation
and configuration states [Sects. 2.1(c), (d), 2.2(f), (g)] can be
modelled with static component parameters. Finally, user-
specific session [Sect. 2.3(h)] and persistent [Sect. 2.3(i)]
states can be modelled with an additional input parameter in
the usage model, and a persistent data store involved in the
latter.

Only two additions to the PCM metamodel are required
to model a component internal state. First, we declare a
set of state variables for a component. Only the declared
state variables can be used within a SEFF. Second, we add
a SetStateAction to the SEFF, which allows us to set a
state variable to a given expression. Input data of the SEFF,
other state variable values and the previous state variable
value can be used in the expression. The state variable can
be used in branch conditions or resource demands as a para-
meter. The use of PCM Stateful extension is illustrated in
Sect. 6.

Figure 2 illustrates the PCM extension. Assume a com-
ponent processing data. It performs a clean-up task after
each megabyte of processed data. Thus, it keeps track
of the amount of data processed. In the model, we store
the limit of 1 MB in a component parameter named
dataLimitInMB.VALUE, defining the component con-
figuration state. We declare a state variableprocessData.
VALUE and initialise it with the value 0, defining a compo-
nent internal state. The SEFF of the component is shown
in a state-chart-like notation in the figure. First, we mod-
elled a SetStateAction to add the currently processed
amount of data (available as inputData.BYTESIZE )

<<SetStateAction>>
processedData.VALUE = 
processedData.VALUE + 

inputDate.BYTESIZE / 10^6

<<GuardedBranchAction>>

processedData.VALUE >= 

dataLimitInMB.VALUE

processedData.VALUE < 

dataLimitInMB.VALUE

<<InternalAction>>
cleanUp

<<State>>
processedData.VALUE = 0

<< InternalAction >>
process

<<ComponentParam>>
dataLimitInMB.VALUE = 1

<<SetStateAction>>
processedData.VALUE = 
processedData.VALUE -
dataLimitInMB.VALUE

Fig. 2 Stateful SEFF example

to the processData.VALUE variable. Then, the data is
processed in the InternalAction process. We omit-
ted the resource demands for brevity. After processing
the data, we check whether a clean-up is required in the
BranchAction. If processData.VALUE >= data
LimitInMB.VALUE, we do the clean-up of 1 MB and set
the state back to processData.VALUE - dataLimit
InMB.VALUE. The second branch is empty.

An extended PCM model can be analysed with the
extended version of the SimuCom simulation presented in
[5] to obtain the performance metrics. At simulation run-
time, each component is instantiated and holds its state
variables. When a SetStateAction is evaluated, its
expression is evaluated and stored in the state variable. If
BranchActions and InternalActions access state
variables, the value is retrieved. The extension increases
the expressive power of SEFFs and allows programming,
although the language does not become Turing complete
(all loops are bounded). As multiple requests to the sys-
tem are analysed concurrently, we can encounter race condi-
tions and other unexpected behaviour. In our example above,
race conditions are excluded because the branch condition
and SetStateAction are evaluated in the same simu-
lation event (no time passes in simulation). However, in
general, if a resource demand is executed between read-
ing the state in a BranchAction and setting the state
in one of the branches, both actions are executed in sepa-
rate simulation events. Here, a second request to the com-
ponent could read or change the state in between, leading to
race conditions. With the extended state modelling, steady-
state behaviour is not guaranteed any more. While this limits
analysability, it also can help detect problems in a software
design.

For example, assume a system service that becomes more
expensive as more requests are served. Then, the response
time of the system will ever increase (“The Ramp” antipattern
[30]) and no steady state can be reached. With the extended
state modelling, this performance antipattern can be detected
based on the simulation results.
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Fig. 3 PCM process outline

4 Outline of the approach

After identifying the types of state-related information in
component-based systems, and extending the PCM perfor-
mance prediction with state-modelling constructs, this sec-
tion together with Sect. 5 elaborates the main contribution of
this paper—a study of the performance impact of the iden-
tified state categories and an analysis of the influences that
should drive the decision on the abstraction level of state
modelling.

Within the PCM process of performance prediction in
Fig. 3, the new state-effect analysis aims to support the activ-
ities 1–4 and 8, which are the only manual activities in the
design process, performed by the four developer roles dis-
cussed in Sect. 3.2. We introduce and validate eight state-
modelling heuristics aimed to guide component developers
(CD) in refining the component models with component-
specific states, software architects (SA) in refining the archi-
tectural models with system-specific states, and domain
experts (DE) in refining the usage models with user-specific
states.

In design-time performance prediction, the issue of effec-
tive model refinement with an additional information has
already been addressed for many system details, including
service parameters, return values, or usage-profile informa-
tion. Our approach gives an insight into the issue of state
modelling, which has not been addressed so far, and tries to
help software engineers to find the balance between accuracy
and complexity of models more competently.

In particular, the approach aims at helping software engi-
neers to decide if the increase in the prediction accuracy intro-
duced by the state modelling outbalances the price that needs
to be paid for the increased model complexity and size. To
compare the two metrics, we first discuss the quantification
of the performance impact (see Sect. 4.1) and the model-
size cost (see Sect. 4.2). Second, we discuss the similari-
ties among the state categories with respect to performance
impact and model-size cost (in Sect. 4.3), and design four
classes clustering the state categories that are similar with
respect to these characteristics (hence the same best prac-

tices apply to their modelling). Each of the classes is later
analysed in Sect. 5. For each class, we discuss the obser-
vations about its performance impact and model-size cost
and design a number of best practices (heuristics) condens-
ing the advices for the software engineers with respect to
state modelling. Each heuristic is experimentally evaluated
and the results of the evaluation are summarised in the text.
Further details of the evaluation are included at the website
of the approach [17].

4.1 Quantification of performance impact

With the adopted PCM, software architects can quantify three
aspects of system performance: response time (of a compo-
nent or system service), throughput (of a service or com-
munication link), and resource utilisation (of a hardware
resource). All the three metrics are reported as random vari-
ables with probability distribution over possible values. The
response time is expressed in given time units (e.g. seconds),
throughput in number of service calls or data amount per
time unit (e.g. the number of transactions per second), and
resource utilisation in the number of jobs currently occupying
the resource.

The three performance metrics for all the individual model
elements are propagated to the system response time, which
quantifies the response time of a given usage profile. The sys-
tem response time is dependent on the response times of the
user-called system services, which depend on the response
times of component services included in the triggered control
flow, resource utilisation of the system hardware resources
employed during service execution, and throughput of the
utilised communication links (due to contention and over-
loading effects).

In this paper, we are hence interested in the impact of state
modelling on the system response time, which can be quan-
tified with different focus, including best/worse time, mean
time, median or variance. In addition software architects can
be interested in the probability distribution or the time series
of possible times. Since for each of the stateful abstractions,
the state-modelling advices or heuristics may have different
validity, we discuss all of them in Sect. 5 although we focus
on the probability distribution, which is the default metric
used in the PCM and most of the mentioned metrics can be
derived from the distribution function.

The individual metrics of system response time discussed
in this paper are: mean value, median value, best/worst
case, variance, probability distribution, and time series. The
first two metrics, the mean and median values, approxi-
mate the expected system response time. Although both
are very popular in statistics, they are usually considered
too coarse-grained for performance engineering. The best
and worst case values are given to make the response-time
characterisation more detailed and are very important in
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predictions for safety critical systems. Together with the
variance, these metrics already characterise the possible
response-time values quite concisely. If all these information
are needed, the full probability distribution of the response-
time values is often required, alternatively formulated as a
cumulative probability function. The most detailed metric
is the time series which reports possible response-time val-
ues of individual system services in connection to the time
when the service execution has been started. The time series
provide a view on the evolution of the response time over
the time, which is a basis for transient analysis of systems,
although time series are the most difficult metric to analyse.

4.2 Quantification of model complexity

The complexity of a model can be best understood when
the model is translated to a low-level formal language with
clearly defined size. Labelled transition systems are one of
the formalisms commonly employed for this purpose. In the
case of component-based systems, different kinds of interact-
ing automata [37,38] are employed to specify large labelled
transition systems via composition of automata-based mod-
els of individual components. In [37], the inclusion of a
state-related information in a model is studied in terms of
Component-Interaction Automata. It is shown that a com-
ponent/system state can be encoded as an automaton inter-
acting with the automata modelling component services—
answering their queries of its current value and accepting
their commands to change the value. The model of a system
is then a composition of not only the models of individual
services (implemented by the components), but also of the
models of all state attributes (whose size corresponds to the
number of possible state values).

Since the size of a composite component-interacting
automaton is defined over a Cartesian product of the ver-
tices of composed automata, the size of the composite model
can be, in the worst case, a multiplication of the size of the
initial stateless model with the size of the state model. How-
ever, our experience shows that this case is very unlikely to
occur, and that the stateful model can be even smaller than
the initial stateless model, due to a higher certainty about the
future behaviour of the system. A more detailed discussion of
this phenomenon can be found in the sub-sections of Sect. 5.

4.3 Diversity of state categories

In Sect. 2, we have identified nine state categories present
in component-based systems and classified them along two
dimensions. While the classification is valid for any qual-
ity model of a component-based software system, i.e. inde-
pendent of performance and the accuracy of its prediction,
this section summarises the performance-related similarities
and differences of the state categories observed during our

experiments. In particular, once we focus on the characteris-
tics of performance impact and the increase in model com-
plexity (i.e. model-size cost), as defined in Sects. 4.1 and 4.2,
strong similarities between some categories can be observed,
which suggest that the same best practices for their inclusion
in performance models will apply.

Allocation vs. configuration state: Both the allocation and
configuration state (consider the component-specific case)
are fixed before the actual system execution. Thus, from the
performance point of view, both can be understood as fixed
component parameters, often usable in an interchangeable
way.

System vs. component-specific state: Even if the component-
based system behaviour is structured into components (build-
ing system architecture), its core is in the interaction of
component services. If we abstract from component bound-
aries, we can find a strong analogy between component inter-
nal state and system global state, and between component-
and system-specific allocation and configuration state.
Session vs. persistent state: From the point of view of
performance-prediction models, the persistent state is analo-
gous to a session state for one life-lasting session, and hence
holding no significant characteristics distinguishing the two.

The identified similarities cluster the defined state cate-
gories into four classes: (1) protocol state, (2) internal and
global state, (3) allocation and configuration state, and (4)
session and persistent state. Since the same best practices on
state modelling (i.e. heuristics suggesting if the state should
be included in the model) apply to all state categories within
the same class, the next section relates the introduced heuris-
tics to the four classes only.

5 State-effect analysis

For each of the four state classes identified in Sect. 4.3, this
section discusses the performance impact and model-size
cost of state modelling and designs a set of modelling heuris-
tics. The heuristics are evaluated on a set of experiments and
the conclusions from the evaluation discussed in the text.

The relative increase in performance accuracy and model
complexity is quantified through a comparison of a stateful
PCM model to a stateless model of the same system, where
the state-dependent decisions are abstracted probabilistically.
The discussion of performance impact is moreover refined
with respect to a number of response-time metrics defined in
Sect. 4.1.

5.1 Protocol state

The protocol state, which is the only state category included
in this class, is used for a very specific purpose. It holds

123



www.manaraa.com

1328 L. Happe et al.

<<GuardedBranchAction>>

state.VALUE == closed
state.VALUE <>

closed

<<InternalAction>>
open

1 <CPU>

<<ProtocolState>>

state.VALUE = closed

<<SetStateAction>>
state.VALUE = opened

SEFF Behaviour
open()

<<GuardedBranchAction>>

state.VALUE <> closed
state.VALUE == 

closed

<<InternalAction>>
modify

10 <CPU>

SEFF Behaviour
modify()

<<GuardedBranchAction>>

state.VALUE <> closed
state.VALUE ==

closed

<<InternalAction>>
close

1 <CPU>

<<SetStateAction>>
state.VALUE = closed

SEFF Behaviour
close()

Fig. 4 A Protocol State example

the information about currently acceptable service calls of a
component.
Example: Recall the protocol-state example outlined in
Sect. 2 with two state values: closed, when the only accept-
able service call is open(), and opened, when the com-
ponent can accept calls on modify() and close(). The
stateful PCM model of the example in Fig. 4 consists of
three SEFF models. Each SEFF starts with a branch condi-
tion deciding if the service will be executed or the service
request ignored. While in the stateful model, the branches
are guarded with the current value of the protocol state,
updated after the execution of open() and close(), the
probabilistic-abstraction model would set fixed probabilities
to the branches based on the expected likelihood of the alter-
natives.

5.1.1 Performance impact

Observations: A number of performed experiments with dif-
ferent variations of the probabilistic model revealed two main
observations on the accuracy of the stateful model comparing
to the stateless (i.e. probabilistic-abstraction) model.

Observation 1: The performance impact of the protocol-
state modelling highly depends on the a priori knowledge
of the usage profile, which in general cannot be guaranteed

since component behaviour and usage profile are typically
defined independently by different developer roles.

Observation 2: Even if the usage profile is known, the
actual probabilities of service execution depend on compo-
nent’s environment through which the usage profile is prop-
agated, and thus can be very hard to quantify.

Heuristics: There are two heuristics that can be derived
from the observations.

Heuristic 1.1: The importance of protocol-state modelling
raises with lower knowledge of the usage profile.

Experimental evaluation: Our experiments have shown
that already a very little inaccuracy in the usage profile
may lead to a very imprecise stateless (i.e. probabilistic-
abstraction) model, since the inaccuracies can be easily mag-
nified by system control flow.1 While any user input is in the
stateful model that readily propagated to the corresponding
system state (valid for the protocol, internal or global state
in particular), in the stateless model, the input effects may be
distributed throughout the whole system model. There are
two performance-related arguments that justify the inclu-
sion of a state-dependent parameter into the model in this
case. Firstly, significantly more effort is required in the state-
less model to update its transition probabilities to a more
accurate usage profile. Secondly, an adaptation of the prob-
abilities in the stateless model does not need to be suffi-
cient to reflect the usage-profile change accurately. A struc-
tural change of the model may be necessary (valid for all
response-time metrics). To illustrate these two phenomena,
we have experimented with an explicit (i.e. state-free) prop-
agation of usage profile changes into the system model,
applying it to all the protocol, internal and global state.
To save space, we present the evaluation details in Heuris-
tic 2.1, which is an analogy of Heuristic 1.1 for internal/
global state.

Heuristic 1.2: The importance of protocol-state modelling
raises with higher complexity of the component’s environ-
ment.

Experimental evaluation: There are situations common
in complex systems, when it may be very difficult or even
impossible to estimate the probabilities in a stateless model
precisely. A simple exemplary model illustrating this phe-
nomenon can be built on the fact that the probabilistic
abstraction can hardly be foreseen in the models where the
same service is called twice and each time behaves dif-
ferently based on the actual protocol-state value that may
change in the meantime. In particular, consider an exten-
sion of the example in Fig. 4 with an additional state
value active and service activate(). A schema of the

1 Note that the PCM supports value-passing and value-guarded control-
flow constructs, which imply that already a minor modification of an
input value in the usage profile may influence system behaviour signif-
icantly.
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closed opened active

open()

activate()

close()

close()

modify()

<<GuardedBranchAction>>

state.VALUE == opened
state.VALUE <>

opened

<<InternalAction>>
activate

1 <CPU>

<<SetStateAction>>
state.VALUE = active

SEFF Behaviour
activate()

<<GuardedBranchAction>>

state.VALUE == active state.VALUE <> active

<<InternalAction>>
modify

10 <CPU>

SEFF Behaviour
modify()

Fig. 5 An extended protocol state example

state values is shown in Fig. 5, together with the model
of activate() and updated model of modify(). The
experimental usage model considers a simple usage pro-
file with a single scenario (for 10 users in the system) call-
ing a sequence: open(); modify(); activate();
modify(); close(). While in the stateful model, the
executability of each service is given by the actual value
of the protocol state, for the probabilistic model, we need
to estimate the transition probabilities for all the branches in
the SEFFs, which are trivial for open(),activate() and
close(), but nontrivial for modify(). Figure 6 illustrates
a typical comparison of stateful (light) vs. stateless (dark)
model results for two variations of this example (increased
complexity of the environment), showing that the deviation
affects all the studied response-time metrics.

5.1.2 Model-size costs

The stateful model of each service connected to a protocol
state has a unified form, having two independent alternatives:
the first (complex) if the service shall be executed, and the
second (trivial) if the call shall be ignored (see Fig. 4). In
a stateful model of the service, two sources of model-size
increase can be observed.

Observation 1: An increase due to state update after ser-
vice execution. The model size increases with the number

Fig. 6 Stateful (light) vs. probabilistic (dark) results

of state updates after service execution. The increase in this
case is however negligible.

Observation 2: An increase due to remembering the actual
state value, and accordingly executing only the right alter-
native. If the size of the model is understood in terms of
a labelled transition system (a graph describing the paths of
possible system behaviour), then the size remains unchanged
as far as there is always only one state value for which each
service can be executed. If a service can be executed under
more than one value of the protocol state, the number of ver-
tices in the model can be multiplied with the number of such
state values. On the other hand, the complexity of the paths
throughout the transition system remains unchanged.

5.2 Internal/global state

The internal state, as well as the global state, holds local
(resp. global) information used to coordinate the behaviour
of the system or its components.
Example: Consider an example of a processData() ser-
vice outlined in Fig. 7, with the internal-state parameter
processed storing the amount of processed data, and coor-
dinating the component to either process additional data or
perform cleanup. Besides, consider an example of a very sim-
ple library search functionality in Fig. 8, which employs two
global states X and Y to store search parameters shared by
the findBook() and archiveSearch() services. In
this example, the two global states imitate value propagation
in the system [(from the user to findBook() and later to
archiveSearch()]. In both examples, the probabilistic
model would be analogous to the stateful model, with the
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<<GuardedBranchAction>>

processed.VALUE 
>= limit

processed.VALUE 
< limit

<<InternalAction>>
processData
10 <CPU>

<<InternalState>>

processed = 0

<<GuardedBranchAction>>

processed.VALUE >= limit processed.VALUE < limit

<<InternalAction>>
cleanUp

20 <CPU>

<<SetStateAction>>
processed.VALUE = 0

<<InternalAction>>
transmit

10 <CPU>

<<SetStateAction>>
processed.VALUE =

processed.VALUE + 1

<<ComponentParam>>

limit = 7

A B C D

Fig. 7 An internal state example of a processData() SEFF

SEFF Behaviour
findBook()

SEFF Behaviour
archiveSearch()

<<LoopAction>>

loopCount = X.VALUE

<<SetStateAction>>
Y.VALUE = X

<<GlobalState>>

X.VALUE = 1

<<ExternalCallAction>>
archiveSearch()

<<ExternalCallAction>>
archiveSearch()

<<SetStateAction>>
Y.VALUE = X*2

<<LoopAction>>

loopCount = Y.VALUE

<<InternalAction>>
search

10 <HD>

<<GlobalState>>

Y.VALUE = 1

Usage scenario
P = 1.0

<<SetStateAction>>
X.VALUE = 1

<<SystemCallAction>>
findBook()

<<SystemCallAction>>
findBook()

<<SetStateAction>>
X.VALUE = 2

<<SystemCallAction>>
findBook()

<<SetStateAction>>
X.VALUE = 3

Fig. 8 A global state example of library search

branches and loop counts guarded with the probabilities of
state values.

5.2.1 Performance impact

Observations: Besides the observations defined by Heuris-
tics 1.1 and 1.2, which are valid for this state category as
well, the example in Fig. 7 discloses an additional influenc-
ing factor specific to this state category. It is connected to a
possible correlation of state values in subsequent branches (or
other control-flow decisions) guarded with an internal/global
state.

Observation 1: The performance impact of the internal/
global-state modelling highly depends on the a priori knowl-
edge of the usage profile and the complexity of the system
(environment of each studied component).

Observation 2: Recall the example in Fig. 7 with strongly
positively correlated branches (let us denote the alternatives
in the first branch A and B, and in the second branch C
and D). Note that while in the stateful model, there are only
two possible service executions (either A followed by C, or

Fig. 9 Stateful (light) vs. probabilistic (dark) results

B followed by D), in the probabilistic model, four alterna-
tives are possible (both A and B can be followed by both C
and D).

Heuristics: The observations can be summarised with the
following heuristics.

Heuristic 2.1: The importance of internal/global-state
modelling raises with lower knowledge of the usage profile.

Experimental evaluation: Our experiments revealed that
already a very little inaccuracy in the usage profile may lead
to a very imprecise stateless (i.e. probabilistic-abstraction)
model, since the inaccuracies can be easily magnified by sys-
tem control flow. This observation is valid for three types of
states (due to their usage dependence): the protocol, internal
and global state. For space reasons, we demonstrate the obser-
vation on a single global-state example of a simple library
search in Fig. 8. In the evaluation, we have first studied the
effects of usage profile propagation to the control flow (see
[17] for more details) and then designed a number of usage
scenarios validating the observation.

In Fig. 9, we present two graphs comparing the state-
ful (light) and probabilistic-abstraction (dark) model results,
where the top graph corresponds to the usage scenario in
Fig. 8 and the bottom graph to a similar usage scenario where
each change of the X.VALUE is uncertain (equals to 1 in 34 %
of cases, 2 in 33 % of cases and 3 in 33 % of cases). The differ-
ence in the results clearly demonstrates higher variability of
the probabilistic results, which is with increasing complexity
of the system propagated also to the deviation in the mean
and median values.

Heuristic 2.2: The importance of internal/global-state
modelling raises with higher complexity of the system (envi-
ronment of each component).
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Fig. 10 Stateful (light) vs. probabilistic (dark) results

Experimental evaluation: The evaluation of Heuristic 2.2
can be built on analogous reasoning to Heuristic 1.2. Two
already presented models can be used for demonstration of
the observations. First, the model employed in Heuristic 1.2
could be modelled with an internal state and used here (see
Figs. 4, 5, 6). Second, the model employed in Heuristic 2.1
integrates also the complexity of the environment and demon-
strates this observation (see Figs. 8, 9).

Heuristic 2.3: The importance of internal/global-state
modelling raises with higher correlation of subsequent state-
driven decisions.

Experimental evaluation: In the experimental evaluation,
we used a number of models analogous to the example in
Fig. 7, with a sequence of two or more state-dependent
branches and internal actions in between. The experiments
(see Figs. 10, 17 for more details) show that even if the
probabilities of the branches accurately reflect the usage pro-
file, the results computed from the stateless models can be
very imprecise. Already in very simple models (one ser-
vice with two or three branches), the probability distribution
(mainly the variance and best/worst case) of the stateless-
model results deviates significantly from the stateful-model
distribution (see Fig. 10). The mean and median values tend
to be quite stable for these simple examples, and start to
deviate when more complexity is introduced into the models
(see Figs. 15, 16 in an analogous Heuristic 4.2, where the
branches are placed in a loop).

5.2.2 Model-size costs

The model of a service involving an internal/global state can
have much more variability than in the case of a protocol

state, since the state-guarded branches and state updates can
be present anywhere in the model. This in the worst case
implies multiplication of the model size with the size of the
state (number of its possible values). In practice however, this
case is very unlikely to occur. The likelihood is decreased by
the factors summarised by the following observations.

Observation 1: A high connection of component behaviour
to a state value. The model does not grow to the worst case if
some of the behaviours are possible only under a particular
state value. Then the combinations of these behaviours with
the infeasible state values do not appear in the model and
restrict the size increase (analogously to the argument for the
protocol state).

Observation 2: A low number of independent state-
guarded branches. Recall the example in Fig. 7. While in the
stateful model with dependent branches two behaviours were
possible (A,C and B,D), if the branch conditions were inde-
pendent, four behaviours would be possible (A,C; B,C; A,D
and B,D). However, a high number of independent branches
does not increase the number of vertices in the model. It only
increases the number of transitions and hence the number
and complexity of behaviour-describing paths.

Observation 3: A small number of state updates. A smaller
number of state updates imply a higher likelihood that some
of the branch conditions will always (or at least often) be
evaluated as false and the behaviours that follow them will
not repeat often in the model (or will not appear at all).

Observation 4: A limited scope of the state. The bigger part
of the system is independent of the state value, the smaller
model-size increase can be expected. That is, the model-size
increase tends to be significantly smaller in the case of com-
ponent internal states compared to the global states.

5.3 Allocation/configuration state

This class comprises four state categories, in particular the
component-specific and system-specific allocation and con-
figuration state, all coordinating system behaviour according
to a fixed (deployment or configuration) parameter.
Example: Consider a simple reference example in Fig. 11
executing a certain functionality in a sequence of loops with
the loop count dependent on an allocation state defining the
maximal queue length within the system. The most impor-
tant property shared by the four state categories represented
by this class is that they are fixed before the execution (in
Fig. 11 modelled at the beginning of the usage scenario)
and hence coordinate component or system behaviour in a
unified way during system execution. Again, while in the
stateful model, branches may be guarded with state values,
in the stateless model, the same branches are guarded with
probabilities (reflecting the likelihood of possible parameter
values). If we are uncertain about the actual value also in
the stateful model, we can include this uncertainty into the
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<<AllocationState>>

queue.VALUE = 1

<<LoopAction>>

loopCount = queue.VALUE

<<InternalAction>>
preprocess
1 <CPU>

<<LoopAction>>

loopCount = queue.VALUE

<<InternalAction>>
process

10 <CPU>

SEFF Behaviour
processQueue()

Usage Scenario
P = 1.0

<<SetStateAction>>
queue.VALUE = 
IntPMF[(1;0.3)(10;0.7)]

<<SystemCallAction>>
processQueue()

Fig. 11 An allocation/configuration-state example

usage profile (in Fig. 11 the value of queue is configured to 1
in 30 % of cases and 10 in 70 % of cases), which before trig-
gering the system execution configures the parameters with
the corresponding probabilities of their values and then uses
them in a fixed way along system execution. On the other
hand, if we have an absolute certainty about the value of the
parameter, we can reduce the stateless model (and actually
also the stateful model) to keep only the branch behaviours
conforming to the actual value of the parameter.

5.3.1 Performance impact

Observations: The above-mentioned specifics imply two
main observations influencing the effect of allocation/
configuration-state modelling.

Observation 1: As distinct from so far discussed cate-
gories, the general influence of the allocation/configuration
state to system performance is independent of the usage
and the environment. For each service, the state-guarded
branches are evaluated in a fixed way, irrespective of the
service clients.

Observation 2: On the other hand, the prediction accu-
racy is highly dependent on the knowledge of deploy-
ment/configuration parameters, which allow the architect to
cut off the behavioural branches in the stateless model that go
against the expected value of the parameter. When this infor-
mation is not available to the component developer (since it
is determined by a different role) and the uncertainty about
the state value needs to be expressed with probabilities, the
probabilistic model exhibits high inaccuracies.

Heuristics: The following heuristic can be derived from
the observations.

Heuristic 3.1: The importance of allocation/configuration-
state modelling raises with lower knowledge of deploy-
ment/configuration parameters.

Experimental evaluation: The experimental evaluation
reveals that whenever there is any uncertainty about the value
of the parameters (as illustrated in Fig. 11), which need to
be in the stateless model modelled with probabilities, the

Fig. 12 Stateful (light) vs. probabilistic (dark) results

model may become very imprecise. The reason for this fact
is that while in the stateful model, the parameter value for
the whole system execution remains the same (the uncer-
tainty about the parameter value is included in only one place,
in the usage profile before triggering system execution), the
stateless model includes also the behaviours reflecting the
unrealistic cases of parameter changes during system execu-
tion (i.e. 1 loop in the first LoopAction followed by 10 loops
in the second one or vice versa in Fig. 11). The deviation of
the stateless model from the stateful results tends to exhibit a
common phenomenon regarding the probability distribution
of the reported values. In particular, while the mean and the
median of the results used to be the same (or very similar),
the variance of the stateless results tends to be higher, with
more possible values in the stateless case. See Fig. 12 for
results of example in Figs. 11, and 17 for a more detailed
discussion.

5.3.2 Model-size costs

The costs of state modelling in terms of the model size are
influenced by the following observations about the expected
size of the stateful and stateless model for the same system
(or system element).

Observation 1: A stateful model of a single system element
uses to be larger than the stateless model of the same element.
This is the case whenever the architect of the stateless model
cuts off those branch behaviours that go against the expected
value of the parameter.

Observation 2: In the case of intended model reuse, the
stateful model of a single system element often has the same
size as the stateless model of the same element. If we do not
know the value of the deployment/configuration parameter in
advance (typical in the case of model reuse in different con-
texts), the stateless (probabilistic abstraction) model needs to
include behaviours implied by all possible parameter values,
and hence has the same complexity as the stateful model.

Observation 3: System models resulting from the composi-
tion of individual stateful model elements are not larger than
the stateless composite system models. As the value of the
allocation/configuration state does not change during system
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loopCount = 3
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1 <CPU>
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<<InternalAction>>
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10 <CPU>

<<InternalAction>>
scanProduct

1 <CPU>

<<SessionState>>

member.VALUE = 0

Fig. 13 A session/persistent-state example

execution, there is no increase in model size, quite the con-
trary. Since all infeasible branches are never executed, the
reachable space of the stateful model can even be smaller
than in its probabilistic variant.

5.4 Session/persistent state

The session state, as well as the persistent state, holds an
information remembered for each individual user, and used
to customise system behaviour accordingly.
Example: Consider a session-state example in Fig. 13 with
sessions connected to individual sales in a supermarket, para-
metrised by information about the customer (has a club mem-
ber card or not). In the example, each product scan (3 in total)
can be followed by recomputation of the product price (if the
customer is a club member), which may significantly influ-
ence system performance for the two types of customers. The
PCM model can be very simple, propagating the user-specific
state in terms of an input value throughout the whole ses-
sion. In the stateless model, the state-guarded decisions are
again replaced with probabilistic decisions. Any uncertainty
about the parameter value can be expressed analogously to
Sect. 5.3.

5.4.1 Performance impact

Observations: The session/persistent state exhibits some sim-
ilarities, but also differences to all the state classes discussed
above. It is very similar to the allocation/configuration state,
but is not fixed along the whole execution (differs for indi-
vidual sessions). It changes very rarely, and is updated only
on a specific place (similarly to the protocol state). On the
other hand, it may guard behavioural branches anywhere in
the execution, as distinct from the protocol state but simi-
larly to the internal/global state. This implies the following
two observations.

Fig. 14 Stateful (light) vs. probabilistic (dark) results

Observation 1: The impact is not very dependent on the
usage profile and environment, but highly dependent on the
knowledge of the distribution of the state values (similarly to
the knowledge of deployment parameters in the case of the
allocation/configuration state).

Observation 2: Since the subsequent queries on the state
value are highly correlated, probabilistic models can hardly
model session/persistent-state dependent behaviour faith-
fully (similarly to the internal/global state).

This state class hence plays a significant role in the model,
due to the implied strong correlation of subsequent state-
guarded branches, and changeability of the state value along
system execution.

Heuristics: There are two heuristics that can be derived
from the observations.

Heuristic 4.1: The importance of session/persistent-state
modelling raises with lower knowledge of the corresponding
user-given parameter values.

Experimental evaluation: Consider the sale example in
Fig. 13, where the value of the member state is uncertain,
reflecting that 30 % of customers are club members and 70 %
are not. Similar to Heuristic 3.1, the experimental evalua-
tion reveals that whenever there is any uncertainty about the
value of the session/persistent state, the results computed
from the stateless model deviate from the accurate results of
the stateful model (with respect to all the studied response-
time metrics—and mainly the probability distribution). The
results for our simple sale example are in Fig. 14.

Heuristic 4.2: The importance of session/persistent-state
modelling raises with higher correlation of subsequent state-
driven decisions, which is typically very high.

Experimental evaluation: The evaluation was built on a set
of examples derived from the sale example in Fig. 13, where
the number of loop counts (i.e. the number of subsequent
state-dependent branches) increases from 3 (in Fig. 14) to 6
and later 9 (both in Fig. 15). Moreover, Fig. 16 combines the
loop counts into one example where in 30 % of cases the loop
count is 3, in 50 % of cases the loop count is 6, and in 20 % of
cases the loop count is 9, to demonstrate that the complexity
of the system further deepens the deviation of the stateless
and stateful results.
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Fig. 15 Stateful (light) vs. probabilistic (dark) results

Fig. 16 Stateful (light) vs. probabilistic (dark) results

The experiments (with different loop counts) demonstrate
that the deviation affects all the response-time metrics. More-
over, the practical performance impact is strengthened by the
fact that the correlation of subsequent state-driven decision
is likely to be very high, since the state value (for both the
session and persistent state) is highly stable along system
execution (i.e. also between the state-dependent decisions).

5.4.2 Model-size costs

The experience learned about the size of the model can be
summarised by the following observations.

Observation 1: Connection of component behaviour to the
state value. The increase due to remembering the actual state
value is dependent on the connection of component behav-
iour to the state value, similarly to the internal/global state.
The weaker the connection is, the closer the model can grow
to the worst case.

Observation 2: Correlation of subsequent decisions.
Thanks to the correlation of subsequent decisions (branches
and loops), there is basically no complexity increase in terms
of the behavioural paths.

Observation 3: State update. There is basically no size
increase due to state update, since the state is not updated
inside the system, and occurs very rarely.

6 Validation

The goal of this section was to evaluate the influence of state-
ful dependencies on the performance of real-world applica-
tions. We decided to use the SPECjms2007 Benchmark [31]
for evaluation due to its particular challenge for our approach.
SPECjms2007 is an official industry-standard benchmark
for in-depth performance analysis of enterprise message-
oriented middleware (MOM) servers based on Java Mes-
sage Service (JMS). This benchmark is designed to measure
the end-to-end performance of all components that make up
the application environment, including hardware, JMS server
software, JVM software, database software if used for mes-
sage persistence, and the system network. Thus, we expect
it to be tailored including relevant stateful dependencies and
thus can be used to evaluate not only the systems in a steady
state, but even to evaluate a transient nature of real-world
enterprise systems.

In the following, we first evaluate stateful dependen-
cies observed in the measurements on this benchmark. Sec-
ond, based on the previously introduced state categorisation
and heuristics, we propose a model in PCM integrating the
state-related information for one of the identified stateful
dependencies. Third, we validate accuracy of our model by
comparing the prediction results using this model to the mea-
surements of the real system. Moreover, we discuss resulting
costs in simulation of the introduced model. To hide from
the user, the model complexity resulting from the state intro-
duction, we encapsulate state-dependent behaviour as parts
of the automated model refinements, called model comple-
tions [18]. Model completions refine models using model-to-
model transformations integrating complex subsystems, in
this case, the subsystems represent modelled state-dependent
behaviour. The main advantage of this automated refine-
ment is the reuse of expert knowledge provided for per-
formance engineers, who do not have to understand the
complex stateful models and only have to provide initial
information, which they have accessible (e.g. that certain
model elements communicate by a transaction with certain
size) to integrate automatically complex transactional sub-
systems in their models.

6.1 Evaluating stateful dependencies in the SPECjms2007
benchmark

The SPECjms2007 Benchmark emulates a supply chain of
a supermarket company. The participants involved are the
supermarket company headquarters, its stores, its distribution
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Fig. 17 Experimental setup for performance measurements

centres and its suppliers. The emulated scenario meets the
requirements of realistic enterprise application, which is
essential for the evaluation of our approach.

We identified a number of relevant stateful dependen-
cies in the benchmarks scenario. The SPECjms2007 bench-
mark is based on a representative workload scenario that
should represent a typical transaction mix. Supported fea-
tures are chosen according to their usage in real-life systems.
Such workload transaction mix can consist of transactional
or non-transactional messages, persistent or non-persistent
messages, durable or non-durable subscriptions or prioritised
messages of specific type, size or origin.

To validate our approach, we evaluated three representa-
tives covering the diversity of state categories as discussed in
Sect. 4.3: (i) the component internal state, which extends the
model of the Message-Oriented Middleware (MOM) to sup-
port transactions, (ii) the configuration state, which allows
modelling the effects of cache utilisation on performance
and (iii) the persistent state, which allows modelling a state-
dependent load balancing strategies (i.e. round-robin replica
assignment per request) among a number of replicas (e.g.
replicas of components) in the software system. In addition
to the case studies introduced in this paper, we conducted
16 simulation experiments described in more detail on the
website of the approach [17].

Figure 17 shows the architecture and the setup used for
evaluation. The setup comprises two nodes that are connected
with a 100 MBit/s Ethernet. We deploy the test drivers for the
benchmark implementation on a Glassfish V2 Web Server.
The headquarters access a MySQL 5.0.95 database through
JDBC. A dedicated experiment controller executes the mea-
surements. Each run of the experiment initiated 1,000 mes-
sages and we measured delivery time of each message in
nano-seconds. For the message persistence, we used the data-
base. In the following, we discuss modelling of the first state-
ful representatives: the component internal state modelling
transactions. We explain how the introduced stateful com-
ponent model extension can be used to create more accurate
prediction models on an example of transactional message-
oriented communication in the benchmark scenario.

Fig. 18 Time series of a transaction measurement with 1,000 messages
per transaction set (one point stands for exactly one measurement of one
message)

6.2 Component internal state: transactional
message-oriented communication

Message-oriented communication among the participants is
implemented using the JMS standard [12] and supports trans-
actions for messages. The transactions guarantee that all mes-
sages are delivered to all receivers in the order they have been
sent. To achieve this behaviour, Sun’s JMS implementation
[32] waits for all incoming messages of a transaction and
then delivers them sequentially. This results in delivery times
depicted in Fig. 18, showing the measured delivery times for
a series of transactions with 1,000 messages each [the sender
initiates a new transaction (as part of a session), passes 1,000
messages to the middleware, and finally, commits the trans-
action]. All messages arrive within the first 0.4 s and are
delivered sequentially within the next second. This behav-
iour leads to delivery times of 0.4 s at minimum. The delivery
times grow linearly until the transaction is completed.

This measurement illustrates that the position of a mes-
sage in the transaction set (i.e. current state of transaction)
determines its delivery time. Thus, the measured delivery
times are not independent and identically distributed, but
strongly depend on the number (and size) of messages that
have already been sent. As a consequence, the prediction
model aiming to predict observed state-dependent behaviour
needs to keep track of the periodical utilisation of resources
(e.g. CPU) and the messages that are part of a transaction,
that influence system performance. To reflect this behaviour,
a state-related modelling construct needs to be part of the
performance model. Then the identification of idle periods
between the transactions is possible, which eases the optimi-
sation of the resource utilisation (e.g. load balancing strate-
gies).

Message-oriented middleware (MOM): In this section, we
use the stateful PCM introduced in Sect. 3.2.1 to create
a required model allowing to predict the delivery time of
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transactional messages as observed from the measurements
of the real system in Fig. 18. Transactional messages are com-
mon in today’s enterprise applications, such as implemented
by SPECjms2007 Benchmark [31]. However, the transac-
tions used in the supply chain management for supermarkets
in the benchmark are limited to small, predefined transac-
tion sizes. To provide a better evaluation, we implemented
an application that allows configuring the number of mes-
sages sent in one transaction following the philosophy of
SPECjms2007. We excluded external disturbances (such as
database accesses) and focussed on the evaluation of the mes-
saging system.

For performance prediction, we extended the model of
MOM introduced by Happe et al. [13] in the following. The
MOM subsumes several components that reflect the influence
of different middleware configurations such as guaranteed
delivery, competing consumers, or selective consumers (see
Fig. 19). A model completion implemented as a model-to-
model transformation (in QVT Relational [28]) generates
the necessary MOM components and integrates them into
a software architecture. We have already demonstrated that
the model of MOM (stateless, thus without transactions) can
predict the performance of a SPECjms2007 scenario with an
accuracy of 5–10 % [13]. In the subsequent paragraphs, we
present an extension of this model that enables the prediction
of the transactions’ effect on the delivery time of a message.

Stateful wrapper for transactions: In the previous model of
MOM, the transactional delivery was not supported, because
of the requirement of the underlying performance model to be
as simple as possible. That does not allow modelling of state-
ful components because of the complexity issues that devel-
oper would have to deal with. We decided to extend the model
of MOM in the way that the usage of stateful components will
be hidden from the developer. By an introduction of stateful
wrapper, which encapsulates state-dependent behaviour, the
black-box principle of components would not be violated
as the extended component itself remains unchanged. The
stateful wrapper will be inserted into the model on demand

Fig. 19 Model of MOM with the transactional delivery extension

by the model completion as an wrapper around previously
stateless component. This wrapper will then manage calls to
the methods of the component based on the state value.

Figure 19 illustrates simple structure of such wrapper to
support transactions and mapping of model changes to the
required features. The stateful wrapper around the compo-
nent then manages incoming messages with respect to the
configuration of the transaction, thus incoming messages are
collected until the transaction size is reached and then com-
mitted for the transmission.

The stateful wrapper allows modelling specific state-
dependent behaviour in the system. We can apply this
approach to any component to model a particular resource-
independent capacity constraint of a component, e.g. a
throughput of requests dependent on the request’s size. The
wrapper component encapsulates and reflects the through-
put restriction using the features that the extended PCM pro-
vides. Hence, it is possible to adapt how the component would
behave at runtime. For example, one component can store the
information on which queues are locked or which component
has locked the queues. Such effects could be automatically
detected in existing implementations of software systems in
operation by automated measurements and experiments (e.g.
by Software Performance Cockpit [14,35]), but it was not
possible to model them at design time without the notion of
state in prediction models; thus, these effects were not visi-
ble in performance predictions and were observed only late
in operation. As a result, performance problems can be iden-
tified only late in the development and so the development
costs increase. Using previously introduced heuristics, the
type of the stateful wrapper to model the state dependence
can be selected, modelled in the extended PCM and auto-
matically inserted into the model using model completions.
In the following, we discuss the details of the model result-
ing from the application of a stateful wrapper to extend the
model of MOM.

Model completion for MOM with transactions: Figure 20
shows the components and connections that are part of the
model (see [13] for details). The model consists of adapter
components and middleware components. The adaptors for-
ward requests and calls to the middleware components that
issue platform-specific resource demands.

The Marshalling component computes the message
size based on the method’s signature. The message size
is passed to subsequent adapters as an additional para-
meter, so that the original interface (IFoo) needs to
be extended (IFoo’). The Sender Adapter calls the
Sender Middleware, which loads the resources of the
sender’s node and forks the call to the MOM Adapter to
reflect the asynchronous behaviour of the messaging sys-
tem. The MOM Adapter realises the transactional behav-
iour of the messaging system. The Receiver Adapter
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Fig. 20 Components of the messaging completion

Fig. 21 Starting a new transaction

calls the Receiver Middleware and, thus, loads the
resources of the receiver’s node. It forwards the requests
to Demarshalling, which maps the extended interface
(IFoo’) back to the original interface (IFoo).

Modelling transactional behaviour of theMOM Adapter:
To start a transaction, the sender has to explicitly call the
startTransaction method. Its behaviour (see Fig. 21)
consists of a single SetStateAction, which resets
the number of messages to zero (numberOfMessages.
VALUE= 0) and enables the transactional message transfer
(isTransactional.VALUE = true).

When startTransaction is called, all the messages
sent in the following become part of a new transaction
until commitTransaction is executed. The behaviour
of the MOM Adapter varies for transactional and non-
transactional messages (see Fig. 22).

If the message is not part of a transaction, the adapter
simply calls the Messaging System, which loads its
local resources with the service demands necessary for trans-
ferring the message, and forwards the messages. Other-
wise, if the message is part of a transaction, then the MOM
Adapter increases the current number of messages of the
transaction (numberOfMessages.VALUE = numberOfMes-
sage.VALUE + 1) and queues the message. The queu-
ing is modelled by two actions. The first external call
action (IMOM.queueMessage) loads the resources of the
Messaging System. The second action acquires the pas-
sive resourcetransactionQueue, which blocks the mes-
sage transfer until the transactionQueue is released.

<<GuardedBranchAction>>

isTransactional.VALUE == true isTransactional.VALUE == false

<<ExternalCallAction>>
IMOM.processMsgTransfer

<<ExternalCallAction>>
IMOM.queueMessage

<<ExternalCallAction>>
IFoo’.service

<<AcquireAction>>
waitForTransferStarted

<<ReleaseAction>>
notifyTransferCompleted

<<ExternalCallAction>>
IFoo’.service

 << InputVariableUsage >>
message.BYTESIZE =

stream.BYTESIZE

    << InputVariableUsage >>
p1.Characterisation = p1.Characterisation 

[…]
pn.Characterisation = pn.Characterisation 
stream.BYTESIZE =  stream.BYTESIZE

<<PassiveResource>>
transactionQueue

capacity = 0

<<PassiveResource>>
synchronisationPoint

capacity = 0

<<SetStateAction>>
numberOfMessages.VALUE =

numberOfMessages.VALUE + 1

<<ExternalCallAction>>
IMOM.processMsgTransfer

Fig. 22 MOM adapter: message transfer

When a transaction is committed and the messages
blocked at the transactionQueue are released, the MOM
Adapterprocesses the message transfer (IMOM.process
MessageTransfer). Furthermore, it notifies the behav-
iour of commitTransaction that the message has been
transferred (transferCompleted is released). Finally,
theMOM Adapter forwards the message to theReceiver
Adapter. This behaviour ensures that all messages are
delivered in the same order as they have been sent.
Figure 23 shows the behaviour executed to commit a
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startMsgTransfer

waitForTransferCompleted

Fig. 23 MOM adapter: commit transaction

transaction. The RD-SEFF reflects the successful execu-
tion of a transaction and neglects possible rollbacks and
re-executions. To commit a transaction and deliver all mes-
sages to the receivers, a loop action iterates over all messages
blocked during the transaction (numberOfMessages.
VALUE). For each message, it unblocks its transfer (releases
passive resource transactionQueue. To ensure the
sequential delivery of messages, it waits for the success-
ful transfer of the message (acquires passive resource
synchronisationPoint) before it continues. Finally,
the transaction is terminated (isTransactional.
VALUE = false) and the number of queued messages is
reset (numberOfMessages.VALUE = 0).

Prediction results for the stateful model of MOM: Figure 24
shows the prediction results for transactional messages using
the models presented in this section. The corresponding real
measurement is shown in Fig. 18. The predictions correctly
reflect the dependence of a message’s delivery time on its
position in the transaction. Furthermore, the predicted deliv-
ery times range from 400 to 1,400 ms, corresponding to the
observed delivery times. Moreover, the introduced model
allows in-depth analysis of the performance impact result-
ing from the usage of transactions: the suitable size of the
transaction can be optimised using such model, performance
problems related to transactions can be easily identified and
periodical utilisation of resources can be observed.

Table 3 lists the predicted and measured median values
for different transaction sizes. Due to the high variance of the
delivery times, the median serves as a representative value
for a specific transaction size. However, the median can only
be considered as an indicator for the prediction accuracy. In
Table 3, predictions and measurements deviate by less than
4 %. These results indicate that the extension of the model
based on PCM Stateful can accurately predict the influence of
(successfully completed) transactions on the delivery time of
a message. Even more important as the prediction accuracy
is that, in the extended model, we can observe periodical bust

Fig. 24 Predicted delivery times for messages in a transaction (one
point stands for exactly one measurement in simulation of one message)

Table 3 Measurement/prediction comparison

Transaction
size

Measurement
(median, ms)

Prediction
(median, ms)

1 1.665917 –

2 2.506566 2.609999

4 4.157104 4.619999

10 9.145 595 9.050000

20 17.012373 17.079999

100 82.752583 85.440000

400 356.843626 360.980000

1,000 943.539863 943.370000

effects typical for state-dependent systems, which could not
be observed in the previous model.

In the following, we shortly discuss the observations and
the prediction results for the other two state-dependent rep-
resentatives. As the used models are very similar to the pre-
viously discussed model extension for MOM, we do not
describe these models for the remaining representatives in
detail, instead, we focus on the observations resulting from
such stateful models.

6.3 Configuration state: CACHE utilisation

The processes in real applications must be cache-efficient to
utilise database effectively. However, the observable increase
in performance is dependent on the current state of cache and
its configuration. We evaluated the importance of cache con-
figuration and how it impacts the performance of the system.
The dependency on the current state of cache was repre-
sented by a configuration state, which was used to model the
cache usage for all components deployed in one deployment
container.

In our scenario, we used cache to support persisting of
messages into the database on the headquarters server. In the
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Fig. 25 Comparison of the response time distribution for cached/
non-cached requests

model, we considered limited capacity of cache and diverse
sizes of messages. We observed increase of performance if
cache was accessible and the transaction could be accessed
in cache instead of the database. On the other hand, if the
capacity of the cache was reached or had to be cleaned, we
observed performance decrease. As the cache load resulted
from a number of different sources and accumulated on the
cache interface, we were able to observe this accumulated
traffic and the increase/decrease in performance depending
on how well the cache was balanced.

Our observation was that effective data caching (what data
and when) is a balancing act as any data cached consumes
resources and thus negatively impacts performance. How-
ever, if the cached data are often accessed by the clients, the
decrease in performance is outweighted by the reduction of
total number of database calls.

Our model was limited by the possibility to model mem-
ory and database calls by the underlying performance model.
Therefore, our model misses the overhead resulting from
database calls. However, even with this limitation, we were

able to observe that our cache design for our usage sce-
nario would not be of an advantage. In the predictions, we
observed the difference in response time deviation between
the model using cache and model without cache. Usage of
cache increased the response time deviation from 0.9 to
1.2 ns. The mean values of both scenarios, however, were
very similar: for the cached model 1.9 ns and non-cached
model 1.8 ns. The difference between the models is better
illustrated in Fig. 25. The observed effect can be explained
through the design of our scenario that includes small queries
on sets of different data. In such situation, cache does not
deliver awaited performance increase. However, without con-
sidering cache in our model, we would not be able to reason
about suitable cache usage and configuration at such early
development stage. We demonstrate how the overall per-
formance of a workload is dependent on cache usage and
how cache modelling allows more detailed insights into the
applications performance. Although, to balance cache usage
properly, the stateful model needs to be accompanied with a
detailed model of resources, such as memory and database.

6.4 Persistent state: random vs. round robin load balancing

We further evaluated different strategies of request handling
in the supply chain scenario. The supermarkets send their
requests to and also get their responses returned from the
headquarters server. However, considering replication on the
side of headquarters server, we can provide shorter response
times for the clients by distributing the incoming requests
among available replicas.

The replica chosen to process a request can be selected
for each request or for all requests per user. Different strate-
gies for the load balancing of requests are available, namely
“Random” (i.e. chooses a replica randomly for each received
request), “Round Robin” (i.e. following an order, every
request is forwarded to the currently assigned replica, and
the next replica is selected for the next user) and “First Avail-
able” (i.e. assigns each user to a randomly chosen replica). In
the case of the last two strategies, the system needs to keep
track of the current assignment of its replicas. All requests
received from an assigned user are then always processed by
the same replica. By these strategies, the pair is created once
when a new user is registered and is used for the whole exis-
tence of the user in the system consistently for each request
from this client.

Figure 26 summarises results of measurements on a real
implementation with different load balancing strategies. We
observed no large difference in the mean response times
between these strategies. However, there are differences in
the variance. To further investigate that behaviour, we con-
ducted a series of simulation experiments.

The experiments demonstrated that, being dependent on
the number of users, the difference between the strategies is
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Fig. 26 Comparison of the mean response times for requests, showing
the three load balancing strategies

varying. We conducted simulation experiments with PCM for
larger number of users. The experiments show that the user-
specific persistent state holding information about mapping
between users and replicas in the “First Available” load bal-
ancing strategy influences performance. First, the response
time for models using “First Available” strategy varies less
than the response time using the “Random” load balanc-
ing. Second, with the higher number of users, both strate-
gies start to converge to the similar mean value and the
difference between the two strategies is for the higher load
smaller. Thus, there exist intervals based on number of users,
where the accuracy of prediction with stateless model (e.g.
“Random”) is very high (especially by highly utilised sys-
tems). However, in the case of smaller load, the prediction
error grows, for example, the predicted response times for
10 (or 1,000) users range from 10 to 95 ms (or 2,500–
4,400 ms) with the “Random” strategy, which corresponds to
the response times in the range from 22 to 33 ms (or 3,300–
3,400 ms) for the “First Available” load balancing strategy.
We observed that the variance for both strategies differs sig-
nificantly, while the mean value is comparable. In Fig. 27,

Fig. 27 Comparison of the response times using “Round Robin”
(light) and “Random” (dark) load balancing strategy (one point stands
for exactly one measurement)

we show comparison between the “Random” and “Round
Robin” load balancing strategies that illustrate the previ-
ously discussed observations. “Random”-stateless model of
load balancing demonstrates higher variability than can be
observed by “Round Robin”-stateful model, however, the
mean values are very similar. Moreover, the periodical util-
isation of resources can be observed in the case of “Round
Robin”.

This experiment shows that, when having different usage
scenarios for the system, we have to test each usage sce-
nario to decide about suitable load balancing strategy. In this
case, pure stateless model has a problem with the accuracy
of prediction and certain effects cannot be observed using
such model. However, even if the mean and median values
correlate for all the strategies to the similar value, the dis-
tributions of probabilities show major inaccuracy. Using the
stateful model, it is possible to predict the systems behaviour
resulting from selected load balancing strategy with higher
accuracy. Although, we do not aim to contrast different load
balancing techniques using presented model, the differences
between them could be easily observed.

7 Discussion

The decision about an appropriate abstraction of state mod-
elling in component-based software systems is a very com-
plex task. As we show in Sect. 5, there are many aspects
that influence the decision significantly. In the experiments,
we have identified a number of situations when the proba-
bilistic abstraction introduces high-prediction inaccuracies,
even if the transition probabilities are estimated as precisely
as possible (see Fig. 16 for instance). At the same time, the
expected increase in model size may anyway discourage soft-
ware engineers from including the stateful information into
their models.

Although we have identified a number of aspects that indi-
cate a low model-size increase in some situations, it is still
very likely that stateful models have very high complexity
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and size, which may complicate their analysis. Even if the
models are not analysed fully, and are examined with simu-
lation methods (like in the case of PCM), model complexity
may have an impact on the time needed for sufficiently accu-
rate performance prediction (duration of a simulation run).
On the other hand, we have observed that the results of state-
ful analysis tend to have much smaller variance, which also
influences the time necessary to execute a simulation run.
The higher variability of stateless models mirrors in the vari-
ance of the results and consequently influences the number of
measurements necessary to achieve results with a high confi-
dence. The cost of a single simulation measurement depends
also on the length of the simulated trace. However, explicitly
modelled states have only little effect on the length of simula-
tion traces, which mainly depends on the modelled software
architecture (e.g. loops dependent on a state value). At the
same time, even if the stateful model is significantly larger,
the confidence about the correctness of predicted values will
be higher if a low-coverage simulation is run on a more accu-
rate (stateful) model, than if a high-coverage simulation is run
on an unrealistic (stateless) model.

When studying the performance impact of state modelling
in Sect. 5, we have compared stateful models to their approx-
imations with probabilistic models. As shown in the text,
even if the probabilities in the stateless models reflect sys-
tem usage and environment, the results of the performance
evaluation may deviate significantly from the stateful models.
The deviation is best visible on the probability distribution of
the response-time values and the time series, which are the
most fine-grained response-time metrics. Also the variance
and best/worse case are very different, with a higher variance
of stateless models. On the other hand, the median and mean
values used to be quite stable, deviating often only slightly
from the stateful model.

There are many types of systems, where the probabilistic
models can approximate the stateful models very closely. For
example, the influence of transactions (described in Sect. 6)
can be approximated probabilistically, if the waiting time of
a message is known and modelled as an explicit delay that
depends on the number of messages sent within the trans-
action. To achieve this, performance analysts have not only
to know in advance the number of messages in a transac-
tion (which is static and cannot change at runtime) but also
the influence of a message on the transaction’s delay (which
needs to be adapted for each change in the transaction size
to get accurate predictions). Modelling transactional mes-
sages probabilistically result in a comparable distribution of
response times. However, the model does not reflect the sto-
chastic dependence of sequentially arriving messages. Fur-
thermore, it provides less flexibility since delays caused by
transactional behaviour have to be known in advance. In most
cases, such information is not available or the delays are
changing constantly. In these cases, an explicit state model

eases the design of performance models and allows accu-
rate predictions with the necessary flexibility. Additionally,
approximating a state with a probabilistic abstraction results
in a decreased possibility of reuse of the component’s pre-
diction model because the probabilities are specific for one
system, one allocation and one usage profile.

8 Conclusion

The paper addresses the challenge of performance prediction
for stateful component-based software systems. To achieve
this aim, we have identified and localised possible types of
state-related information in component-based software sys-
tems, and structured them into a classification scheme along
two dimensions, the scope and place within a component-
based software architecture. We have surveyed the capability
of existing performance-prediction approaches to model the
identified categories, and extended the Palladio Component
Model (PCM) with necessary state-modelling constructs.
Later, we identified the similarities and differences of the
individual state categories with respect to their performance
impact and model-size increase, and introduced and evalu-
ated a number of heuristics summarising the advices to soft-
ware engineers, helping them to competently decide on the
appropriate abstraction of state modelling.

In future, we aim to study the possibility to develop auto-
mated evaluation methods deciding on the validity of the
individual heuristics and updating the performance model
accordingly. The first step is the decomposition of the heuris-
tics to more specific characteristics that define exact condi-
tions to be evaluated on the analysed model. The automatisa-
tion would also include the employment of expert techniques
to determine an appropriate abstraction on the values of indi-
vidual state-related model parameters, to keep the model size
and model accuracy balanced. Another aim of our ongoing
research is to examine the impact of the hardware-specific
state categories, which may reflect the availability and speed
(based on the actual workload) of system hardware resources.

References

1. Bagrodia, R., Shen, C.: Midas: integrated design and simulation of
distributed systems. Trans. Softw. Eng. 17(10), 1042–1058 (1991)

2. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based
performance prediction in software development: a survey. IEEE
Trans. Softw. Eng. 30(5), 295–310 (2004)

3. Becker, S., Grunske, L., Mirandola, R., Overhage, S.: Performance
prediction of component-based systems. In: Architecting Systems
with Trustworthy Components. LNCS, vol. 3938, pp. 169–192.
Springer, Berlin (2006)

4. Becker, S., Happe, J., Koziolek, H.: Putting components into
context: supporting QoS-predictions with an explicit context

123



www.manaraa.com

1342 L. Happe et al.

model. In: Proceedings of the Workshop on Component Oriented
Programming (WCOP) (2006)

5. Becker, S., Koziolek, H., Reussner, R.: The palladio component
model for model-driven performance prediction. J. Syst. Softw.
82(1), 3–22 (2009)

6. Bertolino, A., Mirandola, R.: Modeling and analysis of non-
functional properties in component-based systems. In: Proceedings
of the International Workshop on Test and Analysis of Component-
Based Systems (TACoS). ENTCS, vol. 82, pp. 158–168. Elsevier,
Amsterdam (2003)

7. Bertolino, A., Mirandola, R.: CB-SPE tool: Putting component-
based performance engineering into practice. In: Proceedings of
Component-Based Software Engineering (CBSE). LNCS, vol.
3054, pp. 233–248. Springer, Berlin (2004)

8. Diaconescu, A., Murphy, J.: Automating the performance man-
agement of component-based enterprise systems through the use
of redundancy. In: Proceedings of Conference on Automated soft-
ware engineering (ASE). IEEE (2005)

9. Firus, V., Becker, S., Happe, J.: Parametric performance contracts
for QML-specified software components. In: Proceedings of For-
mal Foundations of Embedded Software and Component-based
Software Architectures (FESCA). ENTCS, vol. 141, pp. 73–90.
Elsevier, Amsterdam (2005)

10. Gallotti, S., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Quality pre-
diction of service compositions through probabilistic model check-
ing. In: Proceedings of Quality of Software Architectures (QoSA).
LNCS, vol. 5281, pp. 119–134. Springer, Berlin (2008)

11. Hamlet, D.: Subdomain testing of units and systems with state.
In: Proceedings of Symposium on Software testing and analysis
(ISSTA). ACM (2006)

12. Hapner, M., Burridge, R., Sharma, R., Fialli, J., Stout, K.: Java Mes-
sage Service Specification-Version 1.1. http://www.oracle.com/
technetwork/java/jms/index.html, (2012)

13. Happe, J., Becker, S., Rathfelder, C., Friedrich, H., Reussner,
R.H.: Parametric performance completions for model-driven per-
formance prediction. Perform. Eval. 67(8), 694–716 (2009)

14. Happe, J., Westermann, D., Sachs, K., Kapova, L.: Statistical infer-
ence of software performance models for parametric performance
completions. In: Research into Practice-Reality and Gaps (Pro-
ceedings of QoSA 2010). LNCS, vol. 6093, pp. 20–35. Springer,
Berllin (2010)

15. Hissam, S., Moreno, G., Stafford, J., Wallnau, K.: Enabling pre-
dictable assembly. J. Syst. Softw. 65(3), 185–198 (2003)

16. Kapova, L., Buhnova, B., Martens, A., Happe, J., Reussner, R.:
State dependence in performance evaluation of component-based
software systems. In: Proceedings of the Joint WOSP/SIPEW Inter-
national Conference on Performance engineering (ICPE). ACM
(2010)

17. Kapova, L., Buhnova, B., Reussner, R.: Stateful software
performance egineering. http://sdqweb.ipd.kit.edu/wiki/Stateful_
Software_Performance_Engineer (2012)

18. Kapova, L., Reussner, R.: Application of advanced model-driven
techniques in performance engineering. In: Computer Performance
Engineering. LNCS, vol. 6342, pp. 17–36. Springer, Berlin (2010)

19. Koziolek, H.: Performance evaluation for component-based soft-
ware systems: a survey. Perform. Eval. 67(8), 634–658 (2010)

20. Koziolek, H., Becker, S.: Transforming operational profiles of soft-
ware components for quality of service predictions. In: Proceed-
ings of Workshop on Component Oriented Programming (WCOP)
(2005)

21. Koziolek, H., Becker, S., Happe, J.: Predicting the performance of
component-based software architectures with different usage pro-
files. In: Proceedings of Quality of Software Architectures (QoSA).
LNCS, vol. 4880, pp. 145–163. Springer, Berlin (2007)

22. Koziolek, H., Happe, J., Becker, S.: Parameter dependent perfor-
mance specifications of software components. In: Proceedings of
Quality of Software Architectures (QoSA). LNCS, vol. 4214, pp.
163–179. Springer, Berlin (2006)

23. Liu, Y., Fekete, A., Gorton, I.: Design-level performance prediction
of component-based applications. Trans. Softw. Eng. 31(11), 928–
941 (2005)

24. Meyerhofer, M., Meyer-Wegener, K.: Estimating non-functional
properties of component-based software based on resource con-
sumption. In: Proceedings of the Software Composition Workshop
(SC). ENTCS, vol. 114, pp. 25–45. Elsevier, Amsterdam (2005)

25. Microsoft Corporation: COM: Component Object Model Tech-
nologies. http://www.microsoft.com/com/, (2012)

26. Mos, A., Murphy, J.: Performance management in component-
oriented systems using a model driven architecture approach. In:
Proceedings of Enterprise Distributed Object Computing Confer-
ence, pp. 227–237. IEEE (2002)

27. Object Management Group: CORBA Component Model 4.0 Spec-
ification. Tech. Rep. formal/06-04-01, Object Management Group
(2006)

28. Object Management Group: MOF 2.0 Query/View/Transfor-
mation, version 1.0 (2008)

29. Sentilles, S., Vulgarakis, A., Bureš, T., Carlson, J., Crnković, I.: A
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